4C Quiz #2

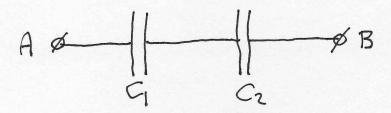
This Quizz is closed book.

Make sure to always indicate positive directions and make large and neat figures. Specify the units of numerical answers.

The electron's mass $m = 9.11 \times 10^{-31}$ Kg and its charge $|e| = 1.6 \times 10^{-19}$ C, $1/(4\pi\epsilon_0) = 9 \times 10^9$ Nm²/C².

PROBLEM 1 (points).

A potential relative to infinity is given by


$$V(x, y, z) = \alpha(x^2 + y^2) \ln(\lambda z)$$

with $\alpha < 0$, $\lambda > 0$ and z > 0.

- a. Calculate the electric field and plot its z-component.
- b. If an electron is positioned somewhere in space in which direction will it move and where will it end up?

PROBLEM 2 (points).

Two capacitors with capacitance C_1 and C_2 are connected in series as shown. Both are initially neutral (no charge). A voltage V is applied between terminals A and B.

- a. Calculate the charge on each of the four plates of the two capacitors.
- b. Calculate the voltages on each capacitor.
- c. Calculate the total potential energy stored in the two capacitors.

PROBLEM 3 (points).

A spherical shell of radius R_2 carries a charge -q. At its center is a charge +Q that is located on a spherical shell of radius R_1 , $R_1 < R_2$. Do not assume that |q| = |Q|. The region between the two shells is filled with a dielectric with dielectric constant κ .

- a. Calculate the electric field in the region $R_1 \leq r \leq R_2$.
- b. Calculate the electric field in the region $r \geq R_2$.
- c. Calculate the potential of the outer shell (relative to infinity).
- d. Calculate the potential of the inner shell.

PROBLEM 4 (points).

An infinitely long solid wire with diameter D carries a constant linear charge density λ . It is surrounded by a dielectric cylinder of radius R. Its dielectric constant is κ .

- a. Calculate the electric field in the region $r \leq R$.
- b. Calculate the electric field in the region $r \geq R$.
- c. Calculate the potential at the surface of the wire (relative to infinity).