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SOLUTIONS TO THE 4C FINAL

PROBLEM 2 (30 points)

Two infinitely long one dimensional charge distributions are positioned along
the x-axis and the y-axis. The charge distributions are uniform and their
charge densities are specified by λ < 0. Calculate the electric field every-
where in the x, y plane except on the coordinate axes.

The solution is the sum of two contributions, one from each linear charge
distribution. The superposition Principle at work! A single linear charge
distribution has an electric field E that is directed radially away from the
line of charge with magnitude E = λ/(2πε0d) where d is the distance from
the line of linear charge distribution, see Giancoli, P. 597.
Consider a point P with coordinates (x, y, 0) located in the first quadrant.
The point P is a distance y away from the linear charge distribution along the
x-axis and a distance x away from the linear charge distribution along the y-
axis. The Figure shows the two resulting electric fields, E1 from the charges
along the x-axis and E2 from the charges along the y-axis. Their magnitudes
are E1 = λ/(2πy) and E2 = λ/(2πx). To make these two relations hold in all
four quadrants we take the absolute values of the magnitudes and generalize
the above results to E1 = λ/(2π|y|) and E2 = λ/(2π|x|). The directions
of E1 and E2 change in an obvious way between the four quadrants. The
vector sum of these two is E = E1 + E2 and is shown in the Figure. It
is left to the reader to calculate its magnitude and specify its direction, for
example the angle with the positive x-axis.
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PROBLEM 3 (30 points)

An electric dipole is positioned in an inhomogeneous electric field E = αxex
with α > 0 a constant. The dipole has a length ` and a dipole moment p.
The vector p makes an angle β with E.

a. Calculate the total force acting on the dipole.

b. Calculate the total torque on the dipole.

c. In view of your answers in a) and b), what is going to happen to the
dipole?

This problem differs from the discussion in Giancoli on P. 579-580 in that
the electric field is inhomogeneous instead of homogeneous. This causes it to
be different at the locations of the two charges that form the dipole. These
charges have magnitude q = |p|/`. The vector p is as always directed from
−q to +q and has length `. The Figure shown the geometry of the dipole
in the inhomogeneous electric field. The center of the dipole is located at
the origin of the coordinate system. The positive charge is located at x+ =
` cosβ/2 > 0 while the negative charge is located at x− = −` cosβ/2 < 0.
The electric fields are E+ = αx+ex and E− = αx−ex. Because of the
sign difference between x+ and x− the respective electric fields point in
opposite directions, different from the case discussed in Giancoli, P. 580.
The forces on each of the charges are charge times electric field respectively
or F+ = +qE+ = αq` cosβ/2ex and F− = −qE− = αq` cosβ/2ex. F+

and F− are in the same direction and unequal in magnitude! Compare with
Giancoli, P. 580 where the two forces are opposite in direction and equal in
magnitude.
The two forces do not cancel and there is a net force along ex that can be
calculated from F 1 and F 2 and causes the dipole to move in the direction
of the positive x-axis. There is a net torque that can be calculated much
like is done in Giancoli, P. 579 for the case of a homogeneous electric field.
The rest of the problem is left to the reader.
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PROBLEM 4 (20 points)

An electric potential V is given by V = α/r2 where r = (x, y, z) and α is a
constant. Calculate the resulting electric field.

E = −∇·V = −∇·α/(x2+y2+z2) = [(∂/∂x)ex+(∂/∂y)ey+(∂/∂z)ez]α/(x
2+

y2 + z2). The first term involves (∂/∂x)[1/(x2 + y2 + z2)] = −2x/(x2 + y2 +
z2)2 = −2x/r4. Putting all three terms together and writing xex + yey +
zez = r we get E = 2αr/r4. The magnitude is E = 2α/r3.

PROBLEM 5 (30 points)

An line of charges is positioned along the x-axis between x = 0 and x = L.
The linear charge density λ < 0 is constant. A point P is located on the
x-axis at position x > L.

a. Calculate the electric potential at point P.

b. Calculate the electric field at point P.

c. Consider the limit x >> L in your answers of a) and b). Do these two
limts make sense? Explain.

d. There is a relation between electric potential and electric field at point
P. What is it and do your answers in a) and b) satisy it?
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The Figure shows the geometry of the problem. We can not use Coulomb’s
Law to calculate the potential at P because that law applies only to point
charges. We can make it apply if we select an infinitely short piece of length
d` of the line of charges. It contains an infinitely small charge λd` which
qualifies as a point charge when we let d` → 0. Thus the potential at P
from this infinitely small charge is dVP = λd`/[4πε0(x − `)] where ` is the
location of d` along the line of charges and x− ` is its distance to point P.
Note that the denominator is the distance raised to the first power. To get
the total potential at P we must integrate over ` from 0 to L. This gives
VP = [λ/(4πε0)] ln[x/(x− L)].
To get the electric field at P we can do one of two things: either differentiate
the potential at P with respect to its position x or we can calculate it
directly using Coulomb’s Law for the electric field of a point charge. We
chose the second and defer the first. Following a reasoning similar to the
one above we get dEP = λd`/[4πε0(x − `)2], directed oward the negative
x-axis. Note the square in the denominator. The after doing the integral we
get E = [Q/(4πε0)]/[x(x − L)] where Q = λ`. Because Q < 0 the electric
field is pointing into the negative x-direction.

Taking the limit x >> L (point P is located far away from the line of charges)
we find using 1/(1+ε) ≈ 1−ε and ln(1+ε) ≈ ε with ε = L/x << 1 that VP =
Q/(4πε0) and EP = Q/(4πε0x

2), just as expected. The approximations
shown follow from Taylor expansions. You should check them and memorize
them. They will be useful for the rest of your professional life.
The relation between electric field and potential is E = −∇V . It can be
verified that this relation holds for the above general results and of course
also for the results obtained in the limit x >> L.

PROBLEM 6 (30 points)

A dielectric with dielectric constant κ is located between the plates of a
planar capacitor. It fills the space between them. With the dielectric in
place the capacitance is C. The plates of the capacitor carry charges of
+Q and −Q respectively. The capacitor is not connected to anything. An
observer pulls out the dielectric. How much work does she have to do pulling
it out? Carefully state whether that work is positive or negative.

Let’s call the value of the capacitor without the dielectric C0. The relation
between C and C0 is C = κC0. With the dielectric in place the capacitor’s
potential energy is Q2/(2C). Without the dielectric it is Q2/(2C0). Note
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that the charges on the plates do not change when the dielectric is pulled out.
The difference in potential energy before and after the dielectric is pulled
out is Q2/(2C0)Q

2/(2C) = Q2/(2C0)Q
2/(2κC0) = [Q2/(2C0)][(κ − 1)/κ].

Because κ > 1 this difference is potitive so the capacitor contains more
potential energy after the dielectric is removed than before. This energy is
delivered to the capacitor by the observer doing work equal to this difference
and that wotk is thus positive. The observer has to pull.

PROBLEM 7 (20 points)
A beam of electrons of velocity v directed along the +x-axis enters a

region with a uniform magnetic field in the +z-direction. This causes the
electron’s trajectory to deviate from the direction of the x-axis.

a. What kind of trajectory do the electrons follow when they are in the
region of the magnetic field? Specify fully their trajectory, velocity,
direction, etc.

b. An observer decides to correct the deviation of the trajectory by ap-
plying an electric field in addition to the magnetic field. In which di-
rection should the electric field be and how large should it be so that
the electrons continue in a straight line when they enter the region of
the magnetic field?

The motion of a charged particle in a magnetic field is discussed in Giancoli,
P. 714 - 715. The Lorentz force is bF = ev ×B. The velocity’s magnitude
does not change at all because the force is always perpendicular to the
velocity. When the electron enters the region of the magnetic field the cross
product points initially in the negative y-direction but the electron’s charge
is negative making the force point in the positive y-direction. Thus the
electron’s motion is in the x − y plane as shown in the Figure. The force’s
magnitude is constant in the region of the magnetic field because the velocity
is always perpendicular to the magnetic field so the electron’s orbit is part
of a circle. After traversing half a circle the electron exits the region of the
magnetic field as shown in the Figure and follows a striaght line. The radius
of the semicircle is r = mv/(|e|B).
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PROBLEM 8 (20 points)

Two parallel conductors (rails) at a distance ` have a conducting bar of mass
m across it at 90 deg as shown in the figure. The rails are connected to a DC
power supply through a switch as shown. The power supply delivers a DC
current I. There is a magnetic field B perpendicular to the rails. When the
switch is closed the power supply will provide its current instantaneously.
The battery (power supply) will maintain the current I despite the induced
voltage caused by the movement of the bar.

a. Calculate the force on the bar after the switch is closed.

b. What is the velocity of the bar after a time t?

c. How much energy has the power supply delivered at time t?

The force is F = `I × B whose magnitude is F = `IB and direction is
to the left. The bar will execute a linear motion of constant acceleration.
The usual formulas from 4A mechanics can be used to answer the remaining
questions.

PROBLEM 9 (30 points)

A magnetic field is associated with a vector poential A(x, y, z) given by
A = i xy ez where x and y are spatial coordinates and i is a constant.

a. Calculate the magnetic field.
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b. Calculate the magnitude of the magnetic field and specify its direction.

c. Calculate ∇ ·A.

d. We have defined Gauge Transformations in order to be able to make
∇ ·A = 0. Why did we want that condition to be true?

Using B = ∇×A we find B = i(xex − yey). The magnitude of B is B =

i
√
x2 + y2 so B has the same value along any circle centered on x = y = 0.

We find ex ·B = ix, ey ·B = −iy. From these relations the cosine of the
angle betwen B and the x-axis and B and the y-axis respectively can be
determined. We also find that ∇ · A = ∇ · (ixyez) = i(∂/∂z)(xy) = 0.
This is good because no Gauge Transformation is needed to make it so.
The divergence condition is a requirement for the relation between current
density and vector potential, see Eq. (41 of )Section 6 of the document
”GaussStokes.pdf” in the 4C website.

PROBLEM 10 (20 points)

People who want to measure a magnetic field sometimes use the flip-coil
method. They use a coil consisting of N turns, each of area A. Initially the
plane of the turns is perpendicular the the unknown magnetic field. They
then rotate the coil over 180 deg with angular veocity ω and measure the
induced voltage in the coil.

a. What is the voltage as function of time?

b. Calculate the magnetic field from the measured voltage.

Call the angle of the normal to the plane of the coil α. Initially α = 0
and the magnetic flux φB = NAB where B is the unknown magnetic field.
The magnetic flux as function of time during the 180 deg turn is φB(t) =
NAB cos(ωt). We take the cosine instead of the sine because we want the
correct flux at t = 0. The induced voltage in the coil is Em{ = (∂/∂t)φb.
Do not multiply this by N , we have already taken the number of turns into
account in calculating the flux. We get Em{ = NABω sinωt and when the
Em{ is measured we can calculate B. We have been sloppy with the signs.
We use Lenz’ Law to figure out in which direction the induced voltage sends
the current: Such that its effect will counter its cause. Do you agree that
its direction depends upon the directin of the turn?
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PROBLEM 11 (20 points)

Two coils with self inductances L1 and L2 respectively are connected in
parallel as shown in the figure.

Calculate the equivalent self inductance of the single coil that replaces
the pair.

The solution is similar to the calculation of the equivalent resistor replacing
two resistors in parallel. While in that case we dealt with currents, here we
must deal with time derivatives of currents because by the definition of L,
E = Li./dt ignoring a minus sign. We assign three currents in the circuit as
shown and use Kirchhoff’s Junction Theorem to get i = i1+ i2. Differentiat-
ing this with respect to time we get di/dt = di1/dt+di2/dt. By definitionwe
have E∞ = L∞d〉∞/dt and E∈ = L∈d〉∈/dt. For the equivalent replacement
self inductance L we have E = Ld〉/dt. Substitution into the equation for
di/dt and realizing that all three Em{ are equal (they are between the same
two terminals) we can cancel them and get 1/L = 1/L1 + 1/L2.
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PROBLEM 12 (30 points).

An inductance, a capacitance, and a switch are connected in a circuit as
shown in the Figure. The inductance is L and the capacitance is C. Initially
the capacitor is charged and has charges ±Q0 on its plates. At t = 0 the
switch is closed.

a. Calculate the differential equation that governs the circuit. Let the
dependent variable be the current in the circuit i(t).

b. Solve the differential equation for i(t).

c. Calculate Q(t) from your answer in b).

d. Plot the current in the circuit and the charge on the capacitor as
function of time.

This circuit is discussed in Giancoli, P. 793 but Giancoli derives a differential
equation with the charge Q(t) on the capacitor as dependent variable. Here
we want the current i(t) as the dependent vaiable. There are no junctions so
we only need to condider Kirchhoff’s Loop Theorem. A positive direction for
the current and its derivative as well as a positive direction for going around
the loop ar shown in the Figure. We also selected which of the two plates
of the capacitor is initially positively charged with charge Q0 = Q(0). With
the switch closed we get Vc−VL = Q/C−Ldi/dt = 0. We see from the signs
in the Figure that i = −dQ/dt. Differentiation of the differential equation
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with respect to t and substituting the last relation for i gives Ld2i/dt2 +
i/C = 0. We had this equation in class. It is similar to Giancoli’s equation
which has the charge Q as dependent variable and it is also the same as
the differential equation for a pendulum. It is linear, homogeneous, and
second order, thus it has two independent solutions of which we make a
linear superposition with two arbitrary constants. You can try exponentials
or trogonometric functions of time. To fix the two arbitrary constants we
need two initial condtions. One is that an infinitely small time after clsoing
the swith the current is still zero so i(0) = 0. For the other initial condition
we determine di/dt at t = 0. From the first equation above (before we
diffrentiated it) we see that di/dt = Q/(LC), valid at all t. At t = 0 this
relation becomes di/dt = Q0/(LC). In the case of a pendulum these initial
conditions correspond to specifying the position of the pendulum and its
velocity at t = 0. We chose exponentials and try to solve the differential
equation by i(t) = exp(γt). Substitution gives γ2 = −1/(LC) so γ is purely
imaginary: γ = ±j

√
1/(LC) with j =

√
−1. We do not use i =

√
−1

because the letter i is already used for current. Set ω2 = 1/(LC) because
we will see later that ω corresponds to an angular frequency so the symbol
is chosen appropriately. So we have i(t) = A exp(+jωt) +B exp(−jωt) and
(differentiating) di/dt = Ajω exp(+jωt) − Bjω exp(−jωt). Using the two
initial conditions at t = 0 we find that A + B = 0 and jωA − jωB =
Q0/(LC) = ω2Q0. These two equations can be solved for the two unknowns
A and B to get A = ωQ0/(2j) and B = −ω0/(2j). The current becomes
i(t) = ωQ0/(2j)(exp(jωt) − exp(−jωt)) or i(t) = ωQ0 sin (ωt). The charge
Q(t) on the capacitor is Q(t) = −

∫
i(t)dt = Q0 cos (ωt) + constant, see the

earlier discussion for the minus sign. The intial condition on Q(t) is that
Q(0) = Q0 so the constant = 0 and Q(t) = Q0 cos (ωt). This shows that
the current and the charge ar π/2 out of phase. Giancoli has a nice graph
showing that on P. 793.

EXTRA CREDIT (30 points)

a. Given a current density j(r) write the expression for the resulting
vector potential A(r).

b. Calculate ∇ ·A using A from a).

A(r) =
µ

4π

∫
j(r′) d3r′

|r − r′|
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Next we calculate ∇ ·A. Note that the ∇ operator acts upon r and not
r′.

∇ ·A(r) =
µ

4π

∫
j(r′) ·∇ 1

|r − r′|
d3r′ = − µ

4π

∫
j(r′) · (r − r′) d3r′

|r − r′|3

where we used that

∇ 1

|r − r′|
=

r − r′

|r − r′|3

For the last two equations refer to the document “nablaoperator.pdf” in the
4C website, Eq. (23) setting f = constant because it depends upon r′ and
Eq. (37). It is not necessary to work the integral because it is seen that the
integrand is odd in the integration variable r′.
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