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STATISTICAL PHYSICS

1 Introduction

sec:Intro
We discuss elements of Statistical Physics. This topic will be revisited in
the Spring Quarter of your junior year. It is thought that some of its re-
sults should not have to wait that long but obviously the material is quite
challenging. Physics 4 as opposed to Physics 2 is still a good forum for
presenting simple elements of Statistical Physics.
We will start with a derivation of the Boltzmann Factor by example.
It is not a proof, that has to wait two years, but the example makes the
Boltzmann Factor plausible. This will be followed by an application to the
velocities of atoms and molecules in gases. This necessitates a discussion
of Probability and how Probability can be used to calculate averages of
physical quantities. Concepts of statistics are well worth your time to study
as they are applicable to areas of physics and error analysis in experimental
physics that go well beyond the material of Physics 4B. We will end with
proofs of the Equal Partion of Energy law.

2 Barometric Formula

sec:BarFor
Consider a column of gas in a gravitational field. You could think of a
column of air of the earth’s atmosphere. For simplicity we assume that
the air is in equilibrium which requires that the temperature 7" is constant
independent of height z above the surface of the earth. The area of the cross
section of the column is A. We shall take the positive z-direction vertically
upward. In the figure we show the column and a narrow horizontal slab of




it with heigth dz. We assume that dz is “small”. We will use Newton’s
Second Law to study what will happen to the slab of gas. Because of the
equilibrium conditions the acceleration of the gas in the slab is zero.

We want to sum all forces acting on the slab and set that sum to zero

because its acceleration is zero.
V(2 +d2)

Z+dz
z

A b=

&) U‘Jadh/&/E

The pressure below the slab is P(z) pointing upward while the pressure
above the slab is P(z + dz) and is pointing downward. Of course pressure
at a certain value of z points equally in all directions but we are interested
in the pressure acting on the slab in the z-direction. The gravitational force
acting on the gas in the slab is equal to the force mg acting on one atom
or molecule times the acceleration of gravity g. If we multiply this force by
the number of atoms or molecules in the slab we get the total gravitational
force on the slab. If the density of atoms or molecules is n(z) per unit
volume and the volume is Adz we find that the total gravitational force
is n(z) Adzmg. We expect the density to be dependent upon z and show
that in the equation. Summing all three forces acting on the slab and apply
Newton’s Second Law we find

+AP(2) — AP(z+dz) —nAdzmg =0 (1)
eq:Al
From a Taylor Series expansion of P(z + dz) around z we find
dP ;
P(z+dz) = P(2) + dz:i—; + O(dz) (2)




eq:A2
where we truncated the series after two terms because we assume that dz
is “small” so terms with (dz)? and higher powers of dz are even smaller.
Substitution of (2) in (1) and simplifying the result gives

fj—g =-nmg (3)

eq:A3
We see that the pressure P decreases with increasing values of z. The de-
crease is larger the more mass the atoms or molecules have so if we consider a
column of air the density of oxygen drops faster than the density of nitrogen.
This is as as expected.

We use the ideal gas law to obtain a relation between pressure P and
density n. For 1 kmol of gas the ideal gas law reads PV = RT. If we
have N(z) (not n(z)) total number atoms or molecules in the slab and thus
N(z)/N4 kmols of gas in the slab the ideal gas law applied to the slab of
gas becomes

PV =N()kT (4)

eq:A4
with £ Boltzmann’s constant and V the volume under consideration, here
the slab of gas. We use that n(z) = N(z)/V in (4) to get

P=n(2)ET (5)

eq:Ab
We differentiate this equation with respect to z and because we assume that
T is constant independent of z (this assumption is manifestly incorrect but
we make it anyway) we get

dP dn
g 6
dz dz & ©)
eq:A6
We eliminate dP/dz between (6) and (3) to get
dn mg
e 7
&z~ rr " @
eq:A7

This is a homogeneous and linear differential equation of first order with
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constant coefficients. These are among the simplest to solve. To solve it we
rewrite (7) as

dn mg
P ®)
eq:A8
and integrate both sides. We get
lnn(z):—--;n—;z—l—c 9)
eq:A9

where C' is a constant yet to be determined. It appears because we do an
indefinite integration. We solve for n in (9) by exponentiation

n(z) = e~M9%/ (RT)HC _ (1 o—mgz/(kT) (10)
eq:A10

The constant C’ is determined when we define the density of the number of
atoms or molecules at z = 0 as ng. So finally the solution of (7) is

n(z) = nge"m9%/(+T) (11)

eq:All
The solution is plotted in the Figure. It is seen that the density n(z) drops
exponentially to zero as z increases and that the drop is faster for atoms or
molecules with larger masses.
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The form of (11) is valid in general rather than only in this example.
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The general form of the function can be written as

e~ E/(*T) (12)

eq:Al2
where E is either the potential energy or the kinetic energy of an atom or
molecule or their sum. The expression in (12) is called the Boltzmann factor.
As mentioned earlier, its proper derivation has to wait.

3 Statistics

We are now in a position to answer some questions about the distribution
of the position of the density of atoms or molecules within the column. For
example we can ask how many atoms or molecules are found at a height
greater than z;. To answer this question we ”bin” the density of atoms or
molecules by dividing the abscissa in many “bins”. The binning is shown in
the figure. Each bin is labeled by the value of z at its center. We take the
“bin width” to be dz where we assume that dz is “small”. Binning means
that we ask which densities of atoms or molecules fall into each bin. A bin
with 2 in the interval [z, z + dz| has n(z)dz density of atoms or molecules
in it.
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For small values of dz the density of atoms or molecules in the bin is
seen to be proportional to dz as desired. To find the density of atoms or
molecules with their z > 2; we need to sum the density of atoms or molecules




in each bin that is to the right of the bin labeled by z1. It does not matter
whether the value of z we assign to the bin is its left boundary, center, or
right boundary because we will take the limit dz —s 0. The sum is evidently
the cross-hatched area in the figure and is given by

4 —mgz/(kT) kT —mgz1 /(KT
/ noe dz = ng— e~ M9%1 (13)
21 mg
eq:B1

When z; = 0 this should be equal to the total density of atoms or
molecules in the column and we find that that equals ng kT'/(m g). When
Z1 = 00 we see that the density of atoms or molecules exceeding the height
Z1 1s zero, as expected.

We can now ask about the probability that the density of atoms or
molecules has a height z exceeding z;. This probability is the density of
atoms or molecules with z > z; divided by the total density of atoms or
molecules. Using (13) this probability P is given by

no % e—mgz1/(kT)

P e —_ e—-mgzl/(kT) (14)

no;%
eq:B2

When 21 = 0 we find that P = 1. Of course all atoms and molecules have
a z > 0 so the probability to find any density at z > 0 is 1. Similarly when
z1 = 0o we find that P = 0 as expected.

- We cani ask about the average height of an atom or molecule. Each bin
with density n(z) dz of atoms or molecules in it has a value of z assigned to
it. To get the average < z > of » we must evaluate

fooo znge~m9%/(kT) g,
fooo noe—m9z/(kT) g

L g = (15)
eq:B3

The numerator is a sum over bins with density n(z) dz of atoms or molecules
in each bin that has its specific value of z. There two quantities are multi-
plied together because one indicates the density of atoms or molecules with
a value of z between z and 2 + dz and the second indicates the value of
%z that belongs to that density. The denominator is the total density of
atoms or molecules as above. You see that ng cancels, this is true for any
multiplicative constant.




If you have trouble understanding (15) consider the simple example of
calculating the average of 10 numbers: 3,1, 2,1,2,8 1,2 2. 1. Thelr
average is 18 / 10 = 1.8. One could also bin the numbers in 3 bins: 0.5 -
1.5 (4 entries), 1.5 - 2.5 (4 entries), and 2.5 - 3.5 (2 entries). A calculation
of the average is now: (4x1 + 4x2 + 2x3) / (44+4+2)=18. We multiply
the number of entries in a bin (the “weight”) by the center of the bin and
sum over all bins (3 here). We then sum the entries in each bin to get the
total number (10) and divide by it. The latter average is called a weighted
average. A plot of the binned numbers is called a histogram. If someone
gives you such a histogram of numbers without the numbers themselves you
can still figure out their total number and their mean from the histogram
alone. When the numbers are real numbers instead of integers the average
and the weuighted average may differ depending upon the binsize. Do you
understand why?

To evaluate the integrals in (15) we use a trick. This trick will be used
later as well and is useful in other fields of science. Counsider

o0 1
/ e *dz =~ (16)
0 (67
eq:B4
Here oo = mg/(kT'). The left-hand side and the righthand side are functions
of a. So we can differentiate each side with respect to o to get

- 1
/ ze dz = — (17)
0 o
eq:B5
This result could also have been obtained by partial integration. We shall
use this trick later when partial integration will not work. Using these results
in (15) we find that

> znge ™92/ *T) g, 1 o? 1 kT
<2 >= 0 = = — = ——
J5° noe—m9z/(*T) g /oo a mg

(18)

eq:B6
We see that the average height increases with temperature and decreases
with mass. This makes sense because atoms’ and molecules’ velocity in-
creases with temperature so they reach higher altitudes but the affect of
gravity works the other way. Equation (11) shows that the density of atoms
or molecules has dropped by a factor 1 /e from its value at z = 0. When
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in (14) 23 =< z > we see that the probability for an atom or molecule to
exceed their average height is 1 /e.

The differential probability dP(z) to find a density n(z) of atoms or
molecules at height between z and z + dz is

n(z)dz mg

dP(z) = -2 = Y —mgz/(kT)

() fion(z)dz kT 5 L )
eq:B7

where (11) was used for n(z) and the common factor ng has been canceled
between numerator and denominator. The probability dP(z) is diffential
because the rest of the equation is differential in dz. This differential prob-
ability is obviously bounded by 0 and 1 as it should be. Using (19) and the
discussion below (13) one sees that the differential probability dP integrates
to 1 so it is normalized to 1 as a proper probability should be. This means
that is the total probability of any density n(z) is 1 as it should be. In
the simple example above this corresponds to saying that the probability to
find a number in bin 1 equals entries in binl / total = 4/10 = 0.4, for bin2
also the probability is 0.4, and for bin 3 the probability is 2/10 = 0.2. Note
that the three probabilities add up to 1.0. Sometimes people do not want
to divide by denominators when doing calculations and use P(z) instead of
n(z). For example, using dP(z) from (19) in (15) instead of n(z) we get

o= /oozdP(z) (20)
0

eq:B8
It’s the same amount of work but the last equation looks more elegant. Note
that the probability is dP(z), not P(z), to find z in the range between z and
z+dz.

4 Application to Monoatomic Gases

sec:Gases
We will now apply the concepts of Section 2 to gases, first to calculate the
average of the square of the velocity of atoms or molecules along the z-axis.
We expect that the average of the velocity along any axis is zero because
such projections are equally likely to be positive or negative. Consider an
atom or molecule between two collisions. Its motion is specified by six vari-
ables: ,y, z, vz, vy,v,. Because between collisions the particle is free its
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acceleration is zero and is threfore not listed. When we bin the particle’s
variables we see that we are dealing with binning in more than one vari-
able. In the most general case we must bin in all six variables and ask for
the probability that an atom or molecule has its z position in the interval
[,z + dz], its y position in the interval [v,y + dy], its z position in the
interval [z, z + dz], its v, velocity component in the interval [v, v, + dvy],
its vy velocity component in the interval [vy, vy + duvy], and its v, velocity
component in the interval [v,,v, + dv,]. The size of this six-dimensional
bin is dz dy dz dv, dvy dv,. This looks worse than it usually is because we
often only care about either one or three of these six variables. We use the
Boltzmann Factor exp(—E/(kT)) from (12) discussed in Section 2 where
the energy E can be either kinetic or potential energy. We are now ready
to write down the expression for < 72 >, In analogy with (15) we get

Ly
ffooo vee 2ma/(ED) dv

<vi>=

(21)

Ao
e s/ W) o,
eq:C1
The variable z in (15) is v, here and the energy E is 2muv?2 instead of mgz.

This integral can be done by usuing a trick. For the denominator we must
evaluate an integral of the form

+oo 2
/ erdy (22)

—00

eq:C2
where a = %m/ (kT), see (21) and we have temporarily changed the inte-
gration limits. Instead we will evaluate its square

+00 +00 —+00 +oo
[ e[l [ e
—0Q —00 —0o0 —C0

eq:C3
This integral look more complicated but we can actually do it. We go from
rectangular (z,y) coordinates to (r,¢) polar coordinates. The change of
variables replaces dx dy by r dr d¢ where the factor r is the Jacobian of the

transformation. The integration limits change to 0 and co for r and 0 and
27 for ¢. Thus (23) becomes

o0 21 >
/ / e ¥ rdrde (24)
0 0
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eq:C4
The integrand does not contain the variable ¢ so we can do the integral over
¢ to get 27. The integral over r can be done because r dr — %d(rz) and r?
appears also in the exponent so the integration variable is really r2.

(o0} —a7~2 (e.@]
—ar?1 g2y _ 1 |€ 1
= d e = — 2
o =4[] - (25)
eq:C5
Putting it all together we get that (24) becomes
+oo  p2rm
/ / e~ dr do = = (26)
0 0 @
eq:C6

We now take the square-root and find that (22) becomes

o0
/ i /g 27)
—00

eq:C7
We will need this integral with its integrand multiplied by z2 and z¢. We can
get these integrals by using the same trick we used in the previous Section
near (16) and (17): Differentiate (27) with respect to a. We find

+o0 1
/ z?e " dy = o / % (28)
—CO

eq:C8
Differentiate this equation with respect to a and get

+o0 3
/ zte gy = 7% / % (29)
—00

eq:C9
The integrands in (28) and (29) are even in the integration variable z so
changing the lower integration limit from —oo to 0 gives a factor —é— in the
result.
Returning to (21) with o = m/(kT) and use (28) in the numerator and
(27) in the denominator to get

1. 3
<vi>=2Y "' e (30)
/o 2a m
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eq:C10
We see that the average of the Z-component squared of the velocity goes to
zero as the temperature approaches absolute zero and that heavier atoms
or molecules move slower. We can now calculate the average kinetic energy
due to the z-component of the velocity and get

< gmd >=1Im <o >=1pT (31)
eq:Cl11
The average kinetic energy due to the z-component of the veocity of an atom
or molecule is %kT independent of their mass so it is the same for any type of
gas. For example, two different gases in the same volume in equilibrium at a
given temperature will share the available energy equally on average between
their atoms or molecules irrespective of difference in the mass of their atoms
or molecules. Of course the z-direction is not special so the above results
also apply to v, and v, and all three components of the velocity carry on
avegae the same amount of energy. This is called Equipartition of Energy.
We shall see that the equipartition extends beyond independence of type of
gas.
At this point one can verify that indeed < vy > = 0 because in analogy
with (21) it is given by

1
f+oo Ve e—imvi/(kT) dv,
<Up >= "2 e

fj;o e~ 2mvz/(KT) dv,,

(32)

eq:C12
It is seen that the integrand of the integral in the numerator is an odd
function of v, and we integrate from —oco to +00, symmetrically around
vy = 0 so that integral is zero. The denominator is not zero because the
integrand is positive for all v,.

We next calculate < v? >. Because E = imo? = im(v2 + vg + v2) we
now must deal with three variables instead of one as above. Our binning is
now done in three dimensions v, Vy, vz instead of one dimension. In analogy
with (21) we must calculate

S [ [H0 g2 o3RO gy gy g,
E ffooc ffooo fjooo e—%m(v£+vg+v§)/(kT) dv, dvy dv,

eq:C13
To evaluate the integral we transform the rectangular coordinates (z,y, 2)

2

<> (33)
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of freedom, see (21), and translational motion has 3 degrees of freedom
(Ve; vy, v;) so the energy per degree of freedom gets multiplied by 3. Two
different gases in the same volume in equilibrium at a given temperature
will share the available energy on average equally between their atoms or
molecules irrespective of the mass and thus independent of the type of gas.
This is an another example of the Equipartition of Energy. We shall see
that the equipartition extends beyond independence of type of gas.

The above results confirm the relation between temperature and kinetic
energy that was used when we discussed the derivation of the Ideal Gas Law
using Newton’s Second Law when studying collisions between atoms and
molecules and the wall of the vessel in which they are contained.

Question: Have we derived the relation between kinetic energy and tem-
perature that was postulated when deriving the Ideal Gas Law? (Think
about where the factor & in the Boltzmann Factor came from!)

5 Application to Diatomic Gases

Consider a gas consisting of diatomic molecules where each molecule consists
of two atoms. These atoms can be identical or different. The two atoms are
bound together by a chemical bond. A physicist’s model of such a molecule
consists of two point particles connected together by a spring with spring
constant K (we use capital K to avoid confusion with Boltzmann’s constant
k). The atoms can vibrate around their equilibrium position causing the
spring to be stretched or compressed. The potential energy associated with
the spring’s change in length is U = —;—K 22 where z is the change in length of
the spring relative to its equilibrium length. The value of z can be positive
(for a stretched spring) or negative (for a compressed spring). The average
potential energy of a vibrating diatomic molecule is in analogy with (21)
given by

f+00(%K$2) e—%K:vz/(kT) dx
_ J—0

e o~ 5 K2 /(KT) A

> (38)

We set o = 2 K/(kT) and find that

(3K) J20 e == /0 gy =
<l >— f+°° e~—aa:2/(kT) - ( )
—0oQ
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The numerator and denominator’s integrals can be taken from (28) and (27)
respectively giving

K i /ma=3/? K

) =
<U>=3 i 1. (40)
When we substitute o = LK/(KT) we get
K kT
<U>=—=— = LkT (41)
L e

We know from our study of the Harmonic Oscillator that it has equal
amounts of average potential and average kinetic energy so using (41) we
may set

<K>=<U>=T (42)

so the total average energy is given by < E > =< U > + < K >=kT. This
corresponds to two degrees-of-freedom, one from average potential energy
and one from average kinetic energy. This result does not contain the masses
of the atoms in the diatomic molecule so the result is valid for any diatomic
molecule. The result also does not depend upon the spring constant K so
weak and strong chemical bonds lead to the same %kT. If K is large the
vibration must have a smaller amplitude and vice versa. This is another
example of the Equipartition of Energy because the energy is the same as
the energy related to kinetic energy of translation along one coordinate axis
and is the same for all diatomic gases. This is a really remarkable result
but contains a contradiction. Assume that we let the spring constant K go
to zero. The everage potential energy does not change according to (41).
When K is infinitely close to zero that average potential energy is still %kT.
That can not be and indeed Quantum Physics will modify this result in a
significant and deep manner. This is the first (?) indication you have in
Physics 4 that something might be wrong with Classical Physics That is
ultimately governed by Newton’s Laws. So that must mean that Newton’s
Laws need modification. A shocking conclusion!

Diatomic molecules also can rotate. There are three possible mutually
perpendicular rotation axes. One is along the line connecting the two atoms,
call this the y-axis and the other two are perpendicular to this line and
perpendicular to each other. The axes pass through the center-of-mass of
the molecule. If the two atoms are indentical the center-of-mass is in the
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middle between the two atoms. If the atoms are different the location of
the center-of-mass must be calculated. There are three inertial moments:
I, I, I,. Review the Physics 4A material about their definitions. Because
we assume that the atoms are point particles I, = 0. I, and I, are equal to
(m1 + mg) £2/4. The kinetic energy of the rotating molecule is E = £ Jw?
where I equal I, when the rotation axis is along the z-axis and I, if the
rotation axis is along the z-axis. We will consider the latter case. The
average kinetic energy of the rotating molecule is given by

[ L) b 4,

< FE > T
+00 —3 L w?/(kT) o
=00

(43)

Here angular velocity w is the variable that needs to be binned in bins with
bin width dw because it is the variable in the problem. The integration goes
from —0o0 to 400 because w can be positive and negative. As before we
introduce o = 1 I, /(k T) and write (42) as

(%Iz) J"j‘;o w2 e—awz/(kT) dw

g
= fj—oooo e—aw?/(kT) 4,

(44)

The numerator and denominator’s integrals can be taken from (28) and (27)
respectively giving

IZ% T o 3/2 1,

E>=—+¥— = 2 45
e o o
When we substitute o = 1, /(kT) we get
Iz% 7o 3/? i :
=<2y 2 _lrT 46
< B T 1k (46)

Are you are getting used to the calculations? You begin to see where the
Equipartition of Energy originates. Again, this result does not contain the
masses of the atoms in the diatomic molecule so the result is valid for any
diatomic molecule. The result also does not depend upon the inertial mo-
ment [, so large and small inertial moments lead to the same %kT. If I, is
large the angular velocity must be smaller and vice versa. The calculation
holds when we replace I, by I, so the everage kinetic energy of a molecule
that rotates around the z-axis is also %k 7
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This is yet another example of the Equipartition of Energy because the
energy is the same as the energy related to kinetic energy of translation along
one coordinate axis and the vibrational energy, the same for all diatomic
gases. The number of degrees of freedom for rotations is 2, not 3 because
rotations around one of the three axes do not carry kinetic energy.

6 Summary

A monoatomic molecule has 3 degrees of freedom corresponding to (v, vy, v,)
while a diatomic molecule has 7 degrees of freedom corresponding to the
same three degrees of freedom (v,,vy,v,) (3), vibration (2), and rotation
(2). Each of these degrees of freedom carries %kT irrespective of mass,
spring constant, inertial moment, or type of gas.

Note that the total energy per molecule is different for an monoatomic
gas than for a diatomic gas and that this fact does not violate the Equiparti-
tion of Energy. Temperature is still proportional to the kinetic energy of the
center-of-mass with the same proportionality constant for all gases as per
Equipartition of Energy. There is no energy flow from diatomic molecules
to monoatomic molecules if they are in the same container even though they
have different energy. Compare two containers of water, both at the same
temperature, but one much larger than the other. Even though the larger
container contains more energy then the smaller container there is no flow
of heat (energy) from the larger container to the smaller container.
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