H.P. Paar PHYS 4B: Mechanics, Fluids, Waves \& Heat

Statistical physics HW solutions

Solutions by Yury Kiselev

1. (a) Summing up all the heights and dividing by number of students, 10, gives 1.75 .
(b) Histogram is plotted in Fig. 1b. See the end of the file.
(c) We will use middle values of height from the histogram to answer this question. The answer is $\langle h\rangle=\frac{1 * 1.55+2 * 1.65+3 * 1.75+3 * 1.85+1 * 1.95}{10}=1.76 \mathrm{~m}$.
(d) From the histogram, it's 4 people out of 10 , so 40%.
(e) $1 / 10,2 / 10,3 / 10,3 / 10,1 / 10$ respectively.
(f) 1.0 .
2. (a) It's 32.
(b) We will use middle values of velocities from the graph to answer this question. The answer is $\langle v\rangle=\frac{2 * 600+4 * 700+6 * 800+9 * 900+7 * 1000+3 * 1100+1 * 1300}{32} \approx 891 \mathrm{mi} / \mathrm{h}$
(c) The answer is $\left\langle v^{2}\right\rangle=\frac{2 * 600^{2}+4 * 700^{2}+6 * 800^{2}+9 * 900^{2}+7 * 1000^{2}+3 * 1100^{2}+1 * 1300^{2}}{32} \approx 817 \cdot 10^{3} \mathrm{mi}^{2} / \mathrm{h}^{2}$
(d) It's defined as a square root of the latter, so

$$
v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \approx 904 \mathrm{mi} / \mathrm{h}
$$

(e) No, it's not the same, $\left\langle v^{2}\right\rangle \neq\langle v\rangle^{2}$.
(f) We will use half of one bin and half of the other, so answer is $p=(4 / 2+6 / 2) / 32=$ $5 / 32 \approx 16 \%$.
(g) No atoms here, so zero.
(h) $2 / 32,4 / 32,6 / 32,9 / 32,7 / 32,3 / 32,1 / 32$ respectively.
3. (a) The distance from the axis to the atoms is $l / 2$, so $I=2 m(l / 2)^{2}=m l^{2} / 2$.
(b) The distance from the axis to the atoms is zero in this case, so $I=0$.
(c) $K_{1}=\frac{1}{2} I_{1} \omega^{2}=\frac{1}{2} I_{1}(2 \pi)^{2} f^{2}=\pi^{2} m l^{2} f^{2}$.
(d) $K_{2}=0$, because $I_{2}=0$.
4. Gases are in equilibrium, so they have same temperatures. $v_{r m s}=\sqrt{\frac{3 k T}{m}}$, so the ratio of the velocities is inversely proportional to the square root of the ratio of the mass of the molecules. Helium is a monoatomic gas, while hydrogen is diatomic, so

$$
\frac{v_{H e}}{v_{H 2}}=\sqrt{\frac{m_{H 2}}{m_{H e}}}=\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}} .
$$

5. (a) $\left\langle v_{z}\right\rangle \propto \int_{-\infty}^{\infty} v_{x} \cdot e^{-m v_{x}^{2} / k T} \mathrm{~d} v_{x}=0$, because this integral is an odd function.
(b) Boltzmann factors for other components will be different, $e^{-m v_{x}^{2} / k T}$ and $e^{-m v_{y}^{2} / k T}$ respectively, but the integral will look the same and will result in zero as well.
(c) No, because $\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle \neq\left\langle v_{x}\right\rangle^{2}+\left\langle v_{y}\right\rangle^{2}+\left\langle v_{z}\right\rangle^{2}$.
6. (a) Assuming that the vertical axis is z as usual, there is no energy associated with the difference in y coordinates, so the Boltzmann factor equals to 1 . The average position is then $\langle y\rangle \propto \int_{y_{\min }}^{y_{\max }} 1 \cdot \mathrm{~d} y=0$.
(b) This average is given by $\langle\vec{r}\rangle=(\langle x\rangle,\langle y\rangle,\langle z\rangle)$. I will assume that the container is small (not comparable to the size of the atmosphere), so the Boltzmann factors for all coordinates are equal to 1 (as $m g z \ll k T$). With this assumption, $\langle\vec{r}\rangle=$ $(0,0,0)$ - center of the cube.

