H.P. Paar PHYS 4B: Mechanics, Fluids, Waves \& Heat

Quizz \# 3 solutions

Solutions by Yury Kiselev

1. (15 points)
(a) (7 points) We are given arrival clock times t_{T} and t_{L}. The only relevant information here is $\Delta t=t_{T}-t_{L}$. Let's denote travel times τ_{L} and τ_{T} respectively, so $L=\tau_{L} v_{L}$ and $L=\tau_{T} v_{T}=\left(\tau_{L}+\Delta t\right) v_{T}$. Solving these two equations with respect to τ_{L} and L gives us

$$
L=\frac{\Delta t v_{T} v_{L}}{v_{L}-v_{T}}
$$

(b) (8 points) Distance between the station and epicenter defines a sphere with radius L : the epicenter can be located at any point of the sphere that lies on or below the ground. If we want to locate the exact epicenter, we will need additional stations. If we have one extra station, then we will be able to measure two distances that will define two spheres. Our epicenter should be located on the intersection between two spheres. This intersection is a circle in general and so we still can't localize the exact position of the epicenter. To do so we need a fourth station.
2. (15 points)
(a) (5 points) Main source of sound is always fundamental frequency, which corresponds to $\lambda_{1}=2 l=\lambda_{2}$.
(b) (5 points) Velocity of the wave propagation is $v=\sqrt{T / \mu}$ and $\lambda=v T=v / f$, so

$$
f_{1}=\frac{1}{2 l} \sqrt{\frac{T_{1}}{\mu}}, \quad f_{2}=\frac{1}{2 l} \sqrt{\frac{T_{2}}{\mu}}
$$

(c) (5 points) Let's consider two sinusoidal waves that interfere which each other at fixed $x=0 . D_{1}=A \sin 2 \pi f_{1} t$ and $D_{2}=A \sin 2 \pi f_{2} t$. The resultant displacement can be written as

$$
D=D_{1}+D_{2}=A\left(\sin 2 \pi f_{1} t+\sin 2 \pi f_{2} t\right)=2 A \cos 2 \pi t\left(\frac{f_{1}-f_{2}}{2}\right) \sin 2 \pi t\left(\frac{f_{1}+f_{2}}{2}\right) .
$$

The first cosine produces beats: the oscillation is too slow to be interpreted as a pitch, it's just a modulation of intensity. There are two beats per cycle: when cosine equals +1 and when it equals -1 , so the beat frequency is twice the frequency of the cosine: $f_{b}=f_{1}-f_{2}$.
3. (10 points) Number of decibels N_{d} the intensity changed is given by

$$
N_{d}=10 \log _{10} \frac{I_{n e w}}{I_{o l d}}=10 \log _{10} \frac{A_{n e w}^{2}}{A_{\text {old }}^{2}}=20 \log _{10} \frac{1}{5} \approx-14.0 \mathrm{~dB} .
$$

4. (40 points)
(a) (15 points) Let's apply second Newton's law to this slab with area A and thickness $d z: F=m a$, where

$$
F=A(P(z)-P(z+d z))=-A \frac{\partial P}{\partial z} d z
$$

and

$$
m a=(\rho A d z) \frac{\partial^{2} s}{\partial t^{2}},
$$

so

$$
\frac{\partial P}{\partial z}=-\rho \frac{\partial^{2} s}{\partial t^{2}} .
$$

(b) (5 points) From the equation above we could derive the wave equation for $s(z, t)$. One of the possible solutions of the wave equation is $s(z, t)=s_{0} \cos (k z-\omega t)$. The other solutions can use sine instead of cosine or have a phase factor: $s(z, t)=$ $s_{0} \sin (k z-\omega t+\Delta \phi)$. Any of these answers is good.
(c) (7 points) From the part (a), and assuming $s(z, t)=s_{0} \cos (k z-\omega t)$,

$$
\frac{\partial P}{\partial z}=-\rho \frac{\partial^{2} s}{\partial t^{2}}=\rho \omega^{2} s_{0} \cos (k z-\omega t)
$$

so, integrating this, we get

$$
P(z, t)=\rho \omega^{2} s_{0}\left(\frac{1}{k}\right) \sin (k z-\omega t)+\text { const }=\frac{1}{k} \rho \omega^{2} s_{0} \sin (k z-\omega t)+\text { const } .
$$

where is average pressure value, relative to which we have oscillations. In usual circumstances this constant is equal to atmospheric pressure.
(d) (5 points) Phase difference between sine and cosine is 90°, because $\sin (\alpha+\pi / 2)=$ $\cos (\alpha)$. We see that the displacement s is proportional to cosine, while pressure P is proportional to sine of the same argument. Then, phase difference between them is 90°.
(e) (8 points) Velocity of the particles is given by $v=\frac{\partial s}{\partial t}=\omega s_{0} \sin (k z-\omega t)$. Let's again consider thin slab with thickness $d z$, density ρ and area A, so the mass of this small slab, moving with constant velocity is $d m=d z A \rho$. The average kinetic energy per unit length will be

$$
\langle K\rangle=\frac{1}{L} \int_{0}^{L} d m v^{2} / 2=\frac{1}{L} \int_{0}^{L} d z A \rho v^{2} / 2=\frac{1}{2 L} \int_{0}^{L} d z A \rho v^{2}=\frac{1}{2 L} \int_{0}^{L} d z A \rho \omega^{2} s_{0}^{2} \sin ^{2}(k z-\omega t) .
$$

Average of square of a sine is $1 / 2$:

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \int_{0}^{L} d z \sin ^{2}(k z-\omega t)=\frac{1}{2}
$$

so the average kinetic energy per unit length is

$$
\langle K\rangle=\frac{1}{4} A \rho \omega^{2} s_{0}^{2} .
$$

5. (20 points)
(a) (5 points) Average kinetic energy of the atoms $\langle K\rangle=\frac{1}{2} m_{A} v_{r m s A}^{2}=\frac{3}{2} k T$, so the $v_{r m s A}=\sqrt{\frac{3 k T}{m_{A}}}$.
(b) (5 points) It doesn't matter how many molecules of gas B are mixed with the gas A; if the gases are at equilibrium, we can still assume that their temperatures are the same and $\left\langle K_{B}\right\rangle=\frac{1}{2} m_{B} v_{r m s B}^{2}=\frac{3}{2} k T$, so the $v_{r m s B}=\sqrt{\frac{3 k T}{m_{B}}}$.
(c) (5 points) Pressure that a single molecule creates is not very well defined - we will use averaged value of pressure over time, so that we can look at this gas as extremely diluted ideal gas, so $P V=N_{a} k T$ formula still applies, where N_{a} is number of atoms: $N_{a}=1$ for "gas" B and $N_{a}=N V$ for gas A, as N - is a number density. The temperatures in case of A and B gases are the same, volumes are the same, so ration of pressures will be given by ratios of the number of molecules: $P_{A} / P_{B}=N V$.
(d) (5 points) We already found average kinetic energies, so the total kinetic energy will be $K_{\text {tot }}=\left\langle K_{B}\right\rangle+N V\left\langle K_{A}\right\rangle=(N V+1) \frac{3}{2} k T$.
6. (25 points) We will assume harmonic pendulum, so the angular displacement is sinusoidal: $\theta=\theta_{M} \cos \omega t$. The potential energy is given by $E_{p}=m g l(1-\cos \theta) \approx m g \theta^{2} / 2$ for small angles θ. The kinetic energy $K=m v^{2} / 2$, where $v=\frac{\partial \theta}{\partial t} l=-l \theta_{M} \omega \sin \omega t$.
Averaging potential energy, we get

$$
\left\langle E_{p}\right\rangle=m g \frac{l}{2}\left\langle\theta_{M}^{2} \cos ^{2} \omega t\right\rangle=m g l \theta_{M}^{2} / 4
$$

Averaging kinetic energy,

$$
\langle K\rangle=\frac{m}{2}\left\langle l^{2} \theta_{M}^{2} \omega^{2} \sin ^{2} \omega t\right\rangle=m \omega^{2} l^{2} \theta_{M}^{2} / 4,
$$

because average of sine or cosine squared is $1 / 2$. Then, using $\omega=\sqrt{g / l}$, we get $\langle K\rangle=\left\langle E_{p}\right\rangle$.

