
H.P. Paar PHYS 4B: Mechanics, Fluids, Waves & Heat Spring 2016

Quizz # 1 solutions
Solutions by Yury Kiselev

1. (40 points)

(a) (15 points) The bar is stable if center mass of the construction is above the
table. The center of mass position, relative to the left side of the bar is given by
x

CM

= MxM+mxm

M+m

, where x

M

is a center of mass of M , so relative to the left side,

x

M

= l/2 and x

m

= l. So x

CM

= Ml/2+ml

M+m

. The value of x is x = l� x

CM

= Ml/2
M+m

.

(b) (10 points) The edge of the table is at the center of the bar, so I

bar

= Ml

2
/12.

We can prove that by calculation: I =

Z
r

2dm = 2

Z
l/2

0

x

2dx · (M/l) = Ml

2
/12.

(c) (15 points) We can write 2nd Newton’s law for the case of rotation: I

tot

↵ = ⌧ ,
where I

tot

— total inertial moment around the edge of the table, ↵ — angular
acceleration and ⌧ — total torque. I

tot

= I

bar

+I

m

, calculated relative to the center
of the bar, so I

tot

= Ml

2
/12 + m(l/2)2. Torque is only created by gravitational

force, acting on mass m, because lines of gravitational force, acting on M and
the normal force, both go through the axis of rotation, edge of the table. Then,
⌧ = mgl/2 and angular acceleration is ↵ = mgl/2

Ml

2
/12+m(l/2)2 = mgl

Ml

2
/6+ml

2
/2 .

2. (30 points)

(a) (10 points) Below the reader can find not a simple solution, but a discussion of
paths that can lead us to the correct one.

In the calculations let’s project all vectors to y axis, pointing upwards. We need
to be very careful with signs in this problem, though there are di↵erent ways to
obtain a correct result. We say that the force exerted by the top spring on the
mass is F1 = +k1�l1, where �l1 = y1 � y. Here we call y1 a position of mass m
on y axis that corresponds to unstretched first spring. Analogously for the second
spring, F2 = �k2�l2 because it’s directed in the opposite way. �l2 = y � y2.

According to 2nd Newton’s law, F
tot

= ma, so m

@

2
y

@t

2 = �y(k1 + k2) + k1y1 + k2y2.
The constant term k1y1+k2y2 depends on where we choose zero position for the y-
axis and will vanish if we choose zero position at the equilibrium. To see that, let’s
find position of the equilibrium in our setting: k1�l1 = k2�l2 for the equilibrium,
which results in y

eq

= k1y1+k2y2

k1+k2
. Now if we make a change of variables: substitute

y = z+y

eq

= z+ k1y1+k2y2

k1+k2
, the equation of motion will become m@

2
z

@t

2 = �z(k1+k2)

or m@

2
z

@t

2 + z(k1 + k2) = 0.

(b) (5 points) This is second order linear di↵erential equation. It’s homogeneous if we
chose such vertical variable that eliminates constant term and non-homogeneous
otherwise.
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(c) (10 points) We will be able to solve the equation, if we get rid of the constant
term. Then, using above, z = A cos!t + B sin!t, where A and B are arbitrary
constants. Alternative form of the solution is z = A cos (!t+ �), where A and �

are arbitrary constants.

If your definition of the vertical coordinate results in a constant term in DE, as
is the case for variable y, we will get y = y

eq

+ A cos!t + B sin!t = k1y1+k2y2

k1+k2
+

A cos!t+B sin!t = k1y1+k2y2

k1+k2
+A cos (!t+ �). Any of this answers is acceptable.

(d) (5 points) At this point, we can only specify ! =
q

k1+k2
m

. All other constants are

unknown (y
eq

, y1, y2) or depend on the initial conditions (A, B or �).

3. (30 points)

(a) (10 points) The system satisfies equation F = ma, where F = �kx and a = @

2
x

@t

2 ,

so @

2
x

@t

2 + k

m

x = 0.

(b) (5 points) The solutions of the equation above are cos!t and sin!t, where ! =q
k

m

, so the frequency is f = !

2⇡ = 1
2⇡

q
k

m

. [Both f and w are ok for the final

answer in part b]

(c) (10 points) One way to find an amplitude of the oscillation is by invoking conser-

vation of energy. After the push, energy of the system is E = U +K = 0 + mv

2
0

2 .
At the maximum stretch point (where x = A), energy is E = U +K = kA

2
/2+0.

They are equal, because there is no damping (surface is frictionless and we

neglect air resistance), and so kA

2
/2 = mv

2
0/2, or A = v0

q
m

k

. We could

also find the same result for the amplitude from considering initial conditions.
Coordinate x(t) = A cos(!t + �), and a velocity is a time derivative of x(t),
then v(t) = �A! sin(!t + �). The initial conditions are x(t = 0) = 0 and
v(t = 0) = �v0. The first one gives us cos(�) = 0, so � = ±⇡/2, and the second is

v(t = 0) = �A! sin(�) = �v0, so � = ⇡/2 and A = v0/! = v0

q
m

k

. We obtained

the same result.

(d) (5 points) No, it is not damped, the surface is frictionless and we usually neglect
air resistance.

4. (extra 30 points)
If the train moves with constant velocity, it’s still an inertial system, so the physical
laws are the same as is in a train at rest (Newton’s first Law). The frequency didn’t

change and remains ! =
q

g

l

. The reason why it oscillates is not important – it’s either

have residual momentum from initial push, or it may oscillate because of small bumps
of the rails.
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