This document is stored in Documents/4B /LongWaves.tex Compile it with
LaTex.

May 8, 2016
Hans P. Paar

LONGITUDINAL WAVES

I discuss the derivation of the wave equation for longitudinal waves. The
discussion will be more extensive then in class and in Giancoli.

1 Wave Equation

We have discussed transverse waves and derived the transverse wave equa-
tion in class. It reads
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This partial DE can be found in Giancoli Sec. 15-5. This equation has z,
the location along the propagating medium, and ¢ as independent variables
and y = y(z,t), the displacement of the propagating medium, as dependent
variable. The wave propagates along the z-direction with a velocity v and
the displacement y is perpendicular the the direction of propagation. Hence
the name “Transverse Wave”. The mean value of y is zero because on average
the propagating medium does not get displaced but it merely oscillates about
its y = 0 equilibrium position. We assume that the displacement y and its
derivatives are small. The velocity of the transverse displacement ylw,0) is
Oy/0t and is not the same as the propagation velocity v of course.

When we consider a longitudinal wave propagating along the z-direction
we need a coordinate like y we had in the case of a transverse wave that
describes the motion of the propagating medium parallel to the propagation
direction. We call this coordinate s and it is a function of z and ¢ just like
y(z,t) for a transverse wave, so s = s(z,t). As with the transverse wave,
the mean value of s is zero because on average the propagating medium
does not get displaced but it merely oscillates about its s = 0 equilibrium
position. We assume throughout that the displacement s and its derivatives
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are small. Also the velocity of the longitudinal displacement s(z,t) is Os/ Ot
and is not the same as the propagation velocity v of course.

Longitudinal waves are pressure variations P, that propagate because
the propagating medium wants to recover its equilibrium position and equi-
librium pressure Py when it is displaced by a pressure variation away from
the equilibrium pressure. The pressure variation causes a change in mass
density p of the propagating medium. The pressure P is a function of p so
we can write

P = f(p) (2)

For the equilibrium values Py and po, the pressure and density in the absence
of a wave, we have

Po = f(po) (3)

If the pressure changes by a small amount P, because of the passage of
a longitudinal wave that changes the density by p. from their equilibrium
values we have according to (2)

PO+Pe:f(PO+Pe) (4)

In general we can make a Taylor Series expansion of f(z + ¢€) around f(z)
as follows

df
fle+e) = f@) +e—|a+ O() (5)

where we truncated the series after the second trm because we assume that
€ is small. Using this in (4) we get

Py + Pe = f(po + pe) = f(po) + pe %'pa (6)

Using (3) in (6) we get

P
P = Pegp“lpo (7)
We now consider an infinitely thin slab of the propagating medium at
two different times, once before a wave passes through and once when a
wave passes through. The slab has area A. They are shown much displaced
from each other for clarity. In reality they will be overlapping. Initially in

2




the absence of a wave, the slab has a thickness Az with one side located
at z and the other side at z + Az. The sides of each slab are wave fronts
that are straight lines perpendicular to the sides of the propagating medium
because the source of the waves is infinitely far away. Initially the slab has a
mass poA Az. When a wave passes through the slab, each wave front moves
as a whole along the propagation direction.
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The wavefront at position  moves to position z + s(z,t) while the wave-
front at position x + Az moves to position z + Az + s(z + Az ,t). Note the
notation and also that the two wave fronts in general will move differently.
Their movements are decribed by the variable s(z,t) as defined earlier. The
mass of the new slab is pA [z + Az + s(z + Az, t) — (z + s(z,t))]. Because
both slabs have the same mass we have

POA Az = pA [z + Az + s(z + Az, t) — (z + s(z, t))] (8)
Because Az is small we again do a Taylor Series expansion
s(z + Az, t) = s(z,t) + Az g—% + O[(A:E)2] 9)

where we truncated the series after the second term because we assume that
Az is small. Using this result in (8) we get

poA Az = pA [Axgi + Az] (10)
or simplifying
0s
PO=pg-tp (11)
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Using p = pg + p. we get
Js
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But both p. and 8s/0z are small so their product is quadratically small so
we drop the p.ds/0z term to get

0s
Po P +pe=0 (13)

This equation makes sense: if 0s/0z is positive, the slab got stretched by
the passge of the wave and the change in density p, is negative and vice
versa.

We are now ready to derive the wave equation for longitudinal waves.
As was the case for transverse waves, we use Newton’s second law. In the
Figure we show a slab with area A of the propagating medium with pressures
on both sides of it shown.
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The net (external) force on the slab is P(x)A‘—l_-'P (z+Az)A and this force
is acting on a slab with mass ppA Az. Note that we use an approximation
when we use pg instead of p but the difference pe between the two can be
neglected. Once again we use a Taylor Series expansion to expand P(z+Axzx)

P(z + Az) = P(z) + Az %i:'” +0[(A2)?] (14)

Using this in the equation for the net force, we get that the net force is
P(z)A - P(z + Az)A = P(z)A— [P(z) + 0P/ Az]A = —0P/0x A Az =
—0(Py + P.)AAx = —0P,/0x A Ax where we used that Py is constant
independent of s. The acceleration of the slab is 9%s/8t>. Using the net
force, the slab’s mass, and the slab’s acceleration we get
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or
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Using (7) we get
9?%s dpe OP
}00&5 = __8?5;"70 (17)
Note that the factor 9P/8p| po 18 a fixed quantity.
We now use (13) into (17) to get
s &%s OP
PP = P p &
Canceling py and rearranging we get
2 i 2
0°s 0%s 0 (19)
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This equation has the standard form of a wave equation that describes lon-
gitudinal waves whose propagation is described by the dependent variable
s(z,t), compare with (1) for transverse waves where the dependent variable
is y(z,t). The velocity of propagation is given by

UL = gp- lpo (20)

2 Propagation Velocity

To get the propagation velocity of longitudinal waves we consider the case
of a gas as propagating medium. We need to calculate OP/0p. We will
consider an ideal gas described by PV = NET where P is the pressure, V'
the volume, NV the total number of atoms or molecules in the volume V, k
the Boltzmann constant, and 7" the absolute temperature. Newton was the
first to calculate the propagation velocity of longitudinal wavs in a gas but
he made a wrong assumption. He assumed that the local temperature T
of a slab would be constant during the passage of a wave. This is not the
case, the temperature changes during such passage and we need to consider
adiabatic changes (no heat flow) of the state of the gas in the slab. This
was done by Laplace 100 years later.




Let’s do Laplace’s calculation. It will turn out that with a small change
Newton’s wrong result can be obtained from Laplace’s solution. We need to
consider adiabatic changes of the state of a gas. It is described by

PV" = constant (21)

Here v is a constant greater then 1 whose value depends upon the nature of
the gas. For a monoatomic gas (a nobel gas) v = 5/3 and v is smaller for
multi-atomic gases. Because the gas’ density p is inversely proportional to
V' we an write (21) as

P = constant p” (22)
Diffentiation gives
oP P
S (23)
9o  p

Multiplying numerator and denominator by V and using PV = NkT we get

AP yNEL g NET kT
p- oV Nem = m

(24)

where we used that pV is the total mass of the gas in volume V and that
this equals the total number of atoms or molecules N in the volume V times
their mass m. So the velocity of propagation of longitudinal waves using

(20) is
sl

So the propagation velocity depends upon pressure and temperature as well
as on the nature of the gas.

We know that the average velocity squared of atoms or molecules in a
gas is given by < u? >= 3kT/m. Here we use u for the velocity of atoms or
molecules in a gas to distinguish it from the propagation velocity v. Thus
kT =m < u® > /3 and squaring (25) and substitution of kT gives

1
v? = e u? > (26)

or for a mono-atomic gas v2 = (5/9) < u? >. The quantities v and < u? >
are nearly equal and that is no coincidence as it is the oscillatory longitudinal
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motion of the atoms or molecules in the propagating medium that cause the
propagation of the wave.

We can obtain Newton’s incorrect result easily as follows. He assumed
that the temperature T of the slab does not change as the longitudinal wave
passes through the slab. This we have

PV = constant (27)

Comparing with (21) we see that if we set v =1, (27) and (21) are identical.
Thus we can take the results of (25) and (26) and set v = 1. We obtain

Newton’s results
g =g (28)
P m

v2:%<u2> (29)

and

Newton was not very wrong! He too obtained the result that the propagation
velocity depends upon pressure and temperature as well as on the nature
of the gas with the correct dependences. Only the numerical value of the
propagation velocity was (slightly) wrong.




