
H.P. Paar PHYS 4B: Mechanics, Fluids, Waves & Heat Spring 2016

Final solutions
Solutions by Yury Kiselev

1. (10 points)

(a) (5 points) Using Bernoulli’s principle, P + ρgz + ρv2/2 = const, compare this
quantity at the top of the water surface and at the exit of the pipe. vtop ≈ 0,
because the vessel is large, so

p0 + ρgh+ 0 = p0 + 0 + ρv2/2.

Then, v =
√

2gh.

(b) (5 points) Cylinder of water with length v∆t will exit the container in time ∆t.
Mass per second will be

∆M
∆t

= v∆tAρ
∆t

= ρvA = ρA
√

2gh.

2. (25 points)

(a) (3 points) PV = NkT , so TA = PAVA/(Nk), and TB = PBVB/(Nk). Incidentally,
PA = PB = PAB, so
TB − TA = PAB(VB − VA)/(Nk) = TB − TA = PAB(VB − VA)/(nR), and
TB/TA = (VB/VA).

(b) (5 points) The simplest solution, which deserves full credit, is to note that the
change is isobaric so is governed by CP . Thus dQ = CP dT and there is no need to
introduce the number of degrees of freedom i as is done in the alternative solution
that follows. Integrating gives a solution in terms of TA and TB.
δQ = dU + PdV , where positive heat here means the heat, added to the system.

∆Q =

∫
δQ,∫

PdV = PAB(VB − VA) = −PAB(VA − VB),

∆U = i
2
Nk∆T , where i is 3, 5, 7 or other number, depending on the active

degrees of freedom of molecules of the gas. So,

∆Q = PAB(VB−VA)+ i
2
Nk(TB−TA) = PAB(VB−VA)+ i

2
PAB(VB−VA) = ( i

2
+1)PAB(VB−VA).

This is negative heat, as VB < VA, so the heat is flowing from the system to the
environment. Alternatively, δQ = nCpdT and Q = nCp(TB − TA) = Cp(VB −
VA)PAB/R.
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(c) (2 points) See part b), W =

∫
PdV = PAB(VB − VA) = −PAB(VA − VB). The

work is negative, so the work is done by the environment on the gas.

(d) (2 points) The work is an area under the graph, with the the sign, determined
by whether the volume is decreasing or increasing. Here the volume is decreasing
and area is PAB(VA − VB), so W = −PAB(VA − VB).
Alternatively, the area under the graph is negative because we integrate from the
left to the right so dV < 0. From that it follows that VB < VA. It is in principle
possible to have an integral whose upper limit is smaller than its lower limit and
yet the integral is positive (not the case here).

(e) (5 points) SB − SA =

∫ B

A

dS =

∫ B

A

δQ
T

=

∫ B

A

dU+PdV
T

=

∫ B

A

i
2
NkdT+PdV

T
.

PV = NkT , and P = const, so PV = NkdT , so

SB − SA =

∫ B

A

i
2
NkdT+NkdT

T
=

∫ B

A

(1+
i
2

)NkdT

T
= (1 + i

2
)Nk lnTB/TA =

= −(1 + i
2
)Nk lnTA/TB.

(f) (2 points) TB < TA, because VB < VA and pressure is constant, so SB − SA is
negative.

(g) (3 points) The plot should indicate that in the A → B process the entropy is
decreasing and temperature is decreasing as well. dS ∝ dT/T , so S ∝ lnT+const,
so the curve should resemble a logarithm if T is a horizontal axis. If T is a vertical
axis, T ∝ expS + const, so the curve should look like exponent.

(h) (3 points) This is a reversible process, so the change of the entropy is dS = δQ
T

.
The δQ for the gas + environment is zero, because the heat that flows from the
gas enters the environment. So, the total change of the entropy is zero. It’s true
only for reversible processes.
Another answer for full credit is that the second law requires dS = 0 for reversible
processes and one considers the gas and the environment to be one reversible
system.

3. (20 points)

(a) (20 points) In the equilibrium situation, all heat from the heater goes out to the
surroundings, so in terms of power, Pin = Pout, so 2 kW = 50 · (T − 20) W , then
T = 60◦C.

(b) (not graded) When the water is boiling, its temperature is 100◦C, so power lost
due to exchange with the surroundings is Pout = 50 · (T − 20) W = 4000 W . The
rest of the heating power goes to evaporating water. So,

∆t = Qv

Pin−Pout
= mLF

5 kW−4000 W
= 0.5·2.3·106

5000−4000
= 1150 s ≈ 19 min.

4. (20 points)
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(a) (2 points) f is a frequency of oscillations and v0 is amplitude of velocity oscilla-
tions.

(b) (2 points) T = 1/f , ω = 2πf .

(c) (3 points) Acceleration is a derivative of velocity with respect to time:

a(t) = dv(t)
dt

= −2πfv0 sin (2πft).

(d) (3 points) To find x(t) we need to integrate, taking into account x0 — position at
t = 0:

x(t) = x0 +

∫ t

0

v(τ) dτ = x0 + v0
2πf

sin (2πfτ)
∣∣∣t
0

= x0 + v0
2πf

sin (2πft).

(e) (3 points)

Ek = mv2

2
=

mv20 cos2 (2πft)

2
.

(f) (4 points)

Eave
k ≡ 〈Ek〉 =

mv20
2
〈cos2 (2πft)〉.

We know that average of sine or cosine squared over time equals to one half, so

Eave
k ≡ 〈Ek〉 =

mv20
4
.

(g) (3 points)

x(t) = x0 + v0
2πf

sin (2πft),

v(t) = v0 cos (2πft) = v0 sin (2πft+ π/2),

so the phase difference between position and velocity is π/2.

5. (30 points)

(a) (8 points) This is partial differential equation – we have two variables, not one
as in ordinary DE. It’s also linear (all terms are linear with respect to y and its
derivatives), of second order (highest derivative is 2), homogeneous (no constant
terms, w.r.t. y and its derivatives), the coefficients are constant (Ts and µ are
constants).

(b) (5 points) Two independent solutions, because the order of the equation is two.

(c) (8 points) Solutions are y = A sin (kx− ωt) and y = A cos (kx− ωt), where we
have a constraint, because a velocity of the wave can be found from DE, v2 = Ts/µ:

ω/k = v =
√
Ts/µ. Changing the argument to kx + ωt or other sign changes in

the argument do not result in a different solution, that only changes the direction
of propagation.
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(d) (4 points) The frequency (and angular frequency) is independent from Ts and µ.
Amplitude is not fixed too. So, the only constant we can specify is k: ω/k = v,
so k = ω/v = 2πf/v.

(e) (5 points) Wavelength λ = vT = v/f = 1
f

√
Ts/µ; wave number k = 2πf/v;

frequency f is not fixed; ω = 2πf is not fixed either; propagation velocity v =√
Ts/µ.

6. (25 points)

(a) (2 points) Volume of the small slab is dV = Adx, and the mass is dm = Aρ0dx.

(b) (5 points) Position of the left side is xnew1 = x + s(x, t), and position of the right
side is xnew2 = x+ dx+ s(x+ dx, t).

(c) (5 points) xnew2 = x + dx + s(x + dx, t) = x + dx + s(x, t) + ∂s
∂x

dx, so the new
volume is dVnew = A(xnew2 − xnew1 ) = A(1 + ∂s

∂x
)dx.

(d) (4 points) Mass of the slab does not change, because only position of the atoms/molecules
inside the slab changes.

(e) (5 points) Then, ρ0V1 = ρV2, so ρ0Adx = ρA(1 + ∂s
∂x

)dx and ρ = ρ0/(1 + ∂s
∂x

).

(f) (4 points) ∂s
∂x
< 0 means that the slab is contracting. In this case, temperature

will rise in the same way as temperature of ideal gas rises if we decrease volume.
Also, we can relate this to friction forces between different layers of the slab.

7. (15 points)
10 log (I1/I2) = B1 = 20 dB, and 10 log (I2/I3) = B2 = 30 dB, so if we compare I1 and
I3: 10 log (I1/I3) = 10 · log (I1I2/I3/I2) = 10(log (I1/I2) + log (I2/I3)) = B1 + B2 =
20 + 30 = 50 dB.

8. (25 points)

(a) (4 points) Second beat is emitted after time T = 1/f , so the source moved a
distance vs/f towards observer and a new distance L2 = L− vs/f .

(b) (4 points) Light velocity is equal to c, so t2 = L2/c = (L− vs/f)/c.

(c) (4 points) For third beat additional period passed and L3 = L − 2vs/f and
t3 = L3/c = (L− 2vs/f)/c.

(d) (4 points) Time between detection of beats is ∆t = t3 − t2 + T = 1/f − vs/(fc).
(e) (3 points) Frequency is a period inversed: fdet = 1/∆t = 1

1/f−vs/(fc) = f
1−vs/c .

(f) (3 points) 1.5f = f
1−vs/c , so 1− vs/c = 2/3 and vs = c/3, a third of a light speed.
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(g) (3 points) It moves towards the observer, because the detected frequency is bigger
than emitted one. Looking at the answer for part e), we see that vs must be
positive, so it means that the direction of the velocity coincides with the the
velocity indicated in the picture (and not opposite to it), so the galaxy moves
towards the obeserver.

9. (20 points)

(a) (2 points)N – is a number of elementary constituents of the gas (atoms/molecules).

(b) (7 points) PV = NkT is a universal formula. Due to equipartition theorem,
if we take into account three degrees of freedom corresponding to 3D motion,
3kT/2 = 〈mv2/2〉, then kT = m/3〈v2〉 and PV = Nm〈v2〉/3 is a universal
formula too. [We could also prove that formula by calculating pressure]

(c) (4 points) No, it’s not correct. Imagine two particles: one has velocity −u, another
has velocity u. Then, 〈v2〉 = (u2 +u2)/2 = u2, but 〈v〉2 = [(−u+u)/2]2 = 02 = 0.

(d) (4 points) As we discussed in part (b), kT = m〈v2〉/3 = mv2
rms/3, so vrms =√

3kT/m.

(e) (3 points) Again, from (b), 3kT/2 = 〈mv2/2〉 = 〈Etranslat.
k 〉.

10. (20 points)
Solids are made of atoms/molecules packed together. We can imagine that some in-
visible springs connect them with each other. So, atoms can vibrate relative to each
other, and this is the only possible degree of freedom for them. At high temperatures
vibrations are independent from each other (temperature is high, so the motion is very
randomized), so each atom can vibrate in three directions (dimensionality of the space),
so contribution to the energy will come from stretching of the springs and from their
velocities. In total, we have six degrees of freedom, each of them corresponding to R/2,
so the total is 3R. It’s the same for all solids because all of them are three-dimensional.
There is no surprise that we have R in the expression – it’s closely connected to k,
which is a universal constant in e−E/(kT ) expression, valid for any system.

11. (30 points)

(a) (5 points) We know that the probability involves the Boltzmann Factor multi-
plied by the differential(s) of the independent variable(s). We only include those
differentials whose variables appear in the integrand, vx in this case. If you in-
clude the differentials of the other variables they cancel between numerator and
denominator, see below, because the integrands do not depend upon them so they
can be put in front of integrals. This leaves exp(−1

2
mv2

x/(kT )) dvx. To get the
requested probability we multiply these two factors divide by the integral of these
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two factors in the denominator. Thus we get

dP (vx) = e−mv2x/(2kT )dvx∫+∞
−∞ e−mv2x/(2kT )dvx

Because the numerator is infinitely small we write dP instead of P .

(b) (5 points) To get the average of vx we use the probability for vx to be in the
interval [vx, vx + dvx] from a) and multiply it by vx, the quantity whose average
we want, and integrate over all vx. We get

〈vx〉 =

∫ +∞

−∞
dP (vx) vx =

∫+∞
−∞ vx e−mv2x/(2kT )dvx∫+∞
−∞ e−mv2x/(2kT )dvx

We have odd function of vx under integral in the numerator, the interval of the
integration is symmetric, so the result is zero because the numerator is not zero.

(c) (5 points)

〈v2
x〉 =

∫ +∞

−∞
dP (vx) v

2
x =

∫+∞
−∞ v2x e−mv2x/(2kT )dvx∫+∞
−∞ e−mv2x/(2kT )dvx

(d) (+20 points)

∫ +∞

−∞
e−αx

2

dx =
√

π
α

, so after taking derivative of both sides with

respect to α, we get ∫ +∞

−∞
e−αx

2

(−x2) dx = (−0.5)
√
π

α3/2 .

Our expression differs by sign only, so:∫ +∞

−∞
v2
x

√
m

π2kT
e−mv

2
x/(2kT ) =

√
m

π2kT
· (0.5)

√
π

(m/(2kT ))3/2
= 2kT ·0.5

m
= kT

m
.

(e) (5 points) 〈v2
x〉 is bigger than zero, while 〈vx〉 = 0, so 〈vx〉2 = 0 too and these two

expressions are not equal. Also, square of an average of the quantity, should not
be the same as average of the squared quantity.

(f) (5 points) We expect it to be equal to kT/2, as it corresponds to one degree of
freedom.

(g) (+3 point) As we expected, 1
2
m〈v2

x〉 = 1
2
m · kT

m
= kT/2.

12. (25 points)

(a) (5 points) Because the expansion is neglected the work p dV = 0.
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(b) (10 points) TdS = dQ = dU + p dV = dU . The specific heat is nc = na/T so
dU = na dT/T . The change in entropy is

∆S =

∫ T2

T1

δQ
T

=

∫ T2

T1

dU
T

=

∫ T2

T1

na
T

dT
T

= −na( 1
T2
− 1

T1
) = naT2−T1

T1T2
.

This is positive.

(c) (10 points) Make the T, S plot with S – ordinate and T as the abscissa using the
result from b). S = −na/T +na/T1, so the graph goes from zero into the positive
direction and asymptotically approaches na/T1.

13. (40 points)

(a) (10 points) Yes, because entropy is a function of a state. This means that the
entropy change does not depend on the path and then this substitution allowed.

(b) (5 points) Part II is an adiabatic process: dS = 0, so δQ = 0. So, S2 − S1 = 0.

(c) (10 points) Part III is T = const curve, so it’s isothermal process. S3 − S2 =∫
δQ
T

= 1
T

∫
δQ. Here δQ = dU + PdV , where positive heat here means the

heat, added to the system. ∆Q =

∫
δQ, dU = i

2
NkdT = nCV dT = 0. So,

∆Q = NkT ln (V3/V2),

so S3 − S2 =

∫
δQ
T

= Nk ln (V3/V2).

(d) (5 points) Sf − Si = S3 − S2 = Nk ln (V3/V2).

(e) (5 points) Yes, as we have seen, δQ > 0, because S3 > S2, so the heat flows from
the environment to the gas during segment III.

(f) (5 points) δQ = TdS, so Q =

∫
TdS, this is an area between a graph and S-axis

in T − S coordinates.

14. (30 points)

(a) (15 points) The probability to find the oscillator in a state n is pn = c · e−En/kT ,
where En = ~ω0n and c – normalization constant. Sum for all n should give

us psum = 1, so 1
c

=
n=∞∑
n=0

e−En/kT = 1 + x + x2 + ..., where x = e−~ω0/(kT ).

Using mathematical identity for |x| < 1: (1 + x + x2 + ...) = (1 − x)−1, we get
c = 1 − e−~ω0/(kT ). Then, the probability to find oscillator in the ground state is
p0 = c · e−E0/kT = (1− e−~ω0/(kT )) · 1 = 1− e−~ω0/(kT ).
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(b) (5 points) When T = 300 K, p0 ≈ 1− e−1.37∗103/(300∗1.38) ≈ 1− e−3.3 ≈ 0.963.

(c) (5 points) When T = 1 K, p0 ≈ 1− e−1.37∗103/(1∗1.38) ≈ 1− e−993 ≈ 1.0 with very
high precision.

(d) (5 points) For the lower temperatures, the quantum oscillator with bigger proba-
bility occupies its ground state.
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